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The three primes theorem
with almost equal summands

By R. C. Baker1 and G. Harman2

1Department of Mathematics, Brigham Young University, Provo, UT 84602, USA
2School of Mathematics, University of Wales, Cardiff,

Senghennydd Road, Cardiff CF2 4AG, UK

The problem of representing all sufficiently large odd numbers as the sum of three
nearly equal primes is tackled using the Hardy–Littlewood circle method in tandem
with a sieve method. A combination of the Harman and vector sieves, as developed
by Baker, Harman and Pintz, is used. To do this, the major arcs of the circle method
involve the investigation of the mean-values of Dirichlet polynomials, while the minor
arcs demand short-range estimates for exponential sums.

Keywords: Hardy–Littlewood circle method; sieve methods;
Goldbach–Vinogradov theorem; exponential sums;

Dirichlet polynomials; distribution of primes

1. Introduction

Every sufficiently large odd integer N is a sum of three primes (Vinogradov 1937;
see also Davenport 1980). Haselgrove (1951) showed that each prime summand may
be taken from the interval

[1
3N −Nθ, 1

3N +Nθ] (1.1)

provided that 63
64 < θ < 1. It is natural to attempt to extend the range of θ (for

papers on this topic, see Cheng-Dong 1959; Jingrun 1965; Cheng-Dong & Cheng-
Biao 1989; Chaohua 1989, 1991a–e, 1994; Zhan 1991) Recently Chaohua (1994) and
H. Mikawa (1994, unpublished work) have given this result for

7
12 < θ < 1.

In the present paper we sharpen this as follows.

Theorem 1.1. Suppose that 4
7 6 θ < 1. Every sufficiently large odd integer N is

the sum of three primes from the interval (1.1).

With more work it may be possible to obtain the exponent 9
16 , but the value 11

20
seems out of reach without a substantial new idea.

The method overlaps with that of Baker et al . (1997); from which we shall quote a
number of results. In that paper the following simple observation is crucial. Let I, J
be intervals. Let ρ denote the indicator function of the prime numbers and suppose
that

A0(k) 6 ρ(k) 6 A1(k) (k ∈ I), (1.2)
B0(m) 6 ρ(m) 6 B1(m) (m ∈ J) (1.3)
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764 R. C. Baker and G. Harman

for certain real sequences Aj(k), Bj(m). Then

ρ(k)ρ(m) > A0(k)B1(m) +A1(k)B0(m)−A1(k)B1(m) (1.4)

for (k,m) ∈ I × J . In the present paper we are concerned with

I = J = [1
3N − Y, 1

3N ], Y = Nθ, N > C1(θ)

for a given θ ∈ [4
7 , 1). We find large classes of sequences b = (b(k))k∈I , c = (c(m))m∈I

such that ∑
k,m∈I
k+m=2n

b(k)c(m) =
u(b)u(c)
L2 (2

3N − 2n)S(2n)(1 +O(L−1)) (1.5)

for almost all even integers 2n in K = [2
3N−Y, 2

3N− 1
2Y ]; the number of exceptional

2n is O(Y L−2). Here L = log(N/3); S(2n) is the singular series associated with
Goldbach’s problem; and u(b), u(c) are ‘density’ constants (see theorem 1.2).

Each pair (b, c) = (Ai,Bj) will satisfy (1.5), and moreover, we shall find that

u(A0)u(B1) + u(A1)u(B0) > u(A1)u(B1). (1.6)

It follows from (1.4)–(1.6) that all but O(Y L−2) even integers 2n in K may be
written in the form

2n = p1 + p2 (pi ∈ I).

(The letter p is reserved for a prime variable.) Moreover, the number of even integers
in K of the form N − p3 with p3 ∈ [1

3N + 1
2Y,

1
3N + Y ] is � Y L−1 (Heath-Brown

& Iwaniec 1979; see Baker et al . 1997). Thus there are � Y L−1 primes p3 ∈ [1
3N +

1
2Y,

1
3N + Y ] for which

N − p3 = p1 + p2, (p1, p2) ∈ I × I,
which yields theorem 1.1.

Before going further we specify the classes B0,B and C of real sequences, defined
on the integers in I, for which we shall prove (1.5) when b ∈ B0 ∩ B and either
b ∈ C, c ∈ B0 or c ∈ B0 ∩ C. Implied constants may depend on A and ε; B denotes
an absolute constant, which need not be the same at each occurrence.

We write b ∈ B0 if, for every A > 0:
(i) we have ∑

k∈I,k6t

(
b(k)χ(k)− δχu

L
)
� Y L−A (1.7)

for a constant u = u(b) and for any real t and Dirichlet character χ (mod q), q 6 LA;
(ii) we have b(k) = 0 unless

(k, P (LA)) = 1, (1.8)

where

P (z) =
∏
p<z

p;

(iii) we have

b(k) = O(τ(k)B). (1.9)
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We say that b ∈ B if b has properties (ii), (iii) and if, in addition,
(iv) we have ∑

k∈I
|b(k)− b′(k)| � Y L−A (1.10)

for a real sequence b′(k) with the following property:∫ T ′+T

T ′

∣∣∣∣∑
k6N

b′(k)χ(k)
k1/2+it

∣∣∣∣ dt� TY N−1/2L−A (1.11)

for any character χ (mod q), whenever

q 6 LA, T ∈ [NY −1, N ], T0 6 T ′ � T 2, T ′ + T 6 N. (1.12)

Here T0 = exp(L1/3).
Let ε be a sufficiently small positive constant depending on θ. We write b ∈ C if

b has properties (ii), (iii) and b satisfies (1.10), where b′ is the sum of the following
sequences:

(I) a sequence

c′(k) =
∑
st=k

s�N1/2

f(s), f(s)� LB;

(II) at most L sequences of the form

c′′(k) =
∑∗

m1...mr=k
Mi<mi62Mi

f1(m1) . . . fr(mr),

where some subproduct of the Mi lies in [N1−θ+ε, Nθ−ε] and (∗) indicates O(1)
relations

me1
1 . . .mer

r > X
with absolute constants e1, . . . , er, and where 1 6 X 6 N . Moreover,

f1(m1) . . . fr(mr)� τ(m1 . . .mr)B.

Theorem 1.2. Let θ ∈ (1
2 , 1) and N > C2(A, θ). Let b ∈ B0 ∩B, c ∈ B0. Suppose

one of b or c is in C. Then (1.5) holds for all but at most Y L−A even integers in K.

The proof of theorem 1.2 will be given in § 2. In § 3 we shall develop families of
sequences that belong to B ∩ C, culminating in pairs (A0,B1), (A1,B0), (A1,B1)
in (B0 ∩ B ∩ C)× B0 for which (1.4) and (1.6) hold.

2. Proof of theorem 1.2

We may suppose that A is large. Let Q = [Y 2N−1L−2A],

Iq,r =
[
r

q
− 1
qQ

,
r

q
+

1
qQ

]
for 1 6 q 6 Q, 1 6 r 6 q, (r, q) = 1. We write

M =
⋃

q6L2A

q⋃∗
r=1

Iq,r;
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766 R. C. Baker and G. Harman

in this section an asterisk denotes the condition (r, q) = 1. Further, let

Mc = [1/Q, 1 + 1/Q]\M.

The left-hand side of (1.5) is∫ 1+1/Q

1/Q
f(α)g(α)e(−2nα) dα,

where

e(θ) = e2πiθ, f(α) =
∑
k∈I

b(k)e(kα), g(α) =
∑
m∈I

c(m)e(mα).

In order to prove theorem 1.2, it suffices to show that∑
2n∈K

∣∣∣∣∫M f(α)g(α)e(−2nα) dα− u(b)u(c)(2
3N − 2n)S(2n)
L2

∣∣∣∣2 � Y 3L−A−7, (2.1)

and that ∑
2n∈K

∣∣∣∣∫Mc

f(α)g(α)e(−2nα) dα
∣∣∣∣2 � Y 3L−A−7. (2.2)

We deal with (2.2) rather quickly. Suppose for example that b ∈ C. Let Γ (α) be
the indicator function of Mc. By Parseval’s equality and (1.8), the left-hand side of
(2.2) is

6
∫ 1

0
|Γ (α)f(α)g(α)|2 dα

6 max
α∈Mc

|f(α)|2
∫ 1

0
|g(α)|2 dα� Y LB max

α∈Mc
|f(α)|2.

Since there is b′, satisfying (1.10), that decomposes into type (I) and (II) sums as
explained above, it suffices to prove that, for α ∈Mc,

S1(α) : =
∑

s6N1/2

∣∣∣∣∑
st∈I

e(stα)
∣∣∣∣� Y L−A,

S2(α) : =
∑

M<s62M
st∈I

β(s)γ(t)e(stα)� Y L−A+B (2.3)

for M ∈ [N1−θ+ε, N1/2]; here |β(s)γ(t)| � τ(st)B. (The relations me1
1 . . .mer

r >
X permitted in the definition of c′′ may be removed by a standard application of
Perron’s formula.)

Since α ∈ Mc, Dirichlet’s theorem yields a rational approximation to α of the
form ∣∣∣∣α− r

q

∣∣∣∣ < 1
qQ

, L2A < q 6 Q, (r, q) = 1.

By (3) of Davenport (1980, § 25),

S1(α)� LB
(
Y

q
+N1/2 + q

)
� Y L−A.
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Applying Cauchy’s inequality to S2(α),

|S2(α)|2 �MLB
∑

M<s62M

∣∣∣∣∑
t

st∈I

γ(t)e(stα)
∣∣∣∣2

�MLB
∑

t1∈L,t2∈L
|γ(t1)γ(t2)|

∣∣∣∣∑
s

e(s(t1 − t2)α)
∣∣∣∣,

where L = [1
7NM, 1

2NM ] and s is summed over the interval

M < s 6 2M, st1 ∈ I, st2 ∈ I.
Since |γ(t1)γ(t2)| 6 1

2(|γ(t1)|2 + |γ(t2)|2), we have

|S2(α)|2 �MLB
∑
t1∈L
|γ(t1)|2

∑
t2

|t2−t1|6YM−1

min
(
YM

N
,

1
||(t1 − t2)α||

)

�MLB N
M

YM

N

+MLB
∑
t1∈L
|γ(t1)|2

∑
0<|t2−t1|6YM−1

min
(
YM

N
,

1
||(t1 − t2)α||

)

� YMLB +MLB N
M

(
Y 2

Nq
+
Y

M
+Q

)
,

on a further application of Davenport (1980, § 25, (3)). Since L2A < q 6 Q, (2.3)
follows from our choice of Q above.

Turning to a point α inM, say α = r/q+η ∈ Iq,r, we shall give the approximation

f(α) = f0(α) +O(Y L−A), (2.4)

where

f0(α) =
µ(q)
φ(q)

u(b)
L t(η), t(η) =

∑
k∈I

e(kη).

By (2.4) of Baker et al . (1997), it suffices to show, for a fixed χ (mod q), that

S1(χ, η) :=
∑
k∈I

b(k)χ(k)e(kη) =
u(b)δχ
L t(η) +O(Y L−2A). (2.5)

We rewrite S1(χ, η) in the form

S1(χ, η) =
∫
I

e(vη) dG1(v) +O(Y L−2A), (2.6)

where
G1(v) =

∑
w6k<v

b′(k)χ(k), w = 1
3N − Y.

We now apply Perron’s formula (Titchmarsh 1986, lemma 3.12) to obtain

G1(v) = G2(v) +O(1) (v ∈ I),
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768 R. C. Baker and G. Harman

where

G2(v) =
1

2πi

∫ (1/2)+iN

(1/2)−iN

∑
k6N

b′(k)χ(k)k−s
(
vs − ws

s

)
ds.

Consequently,∫
I

e(vη) dG1(v)−
∫
I

e(vη) dG2(v)

= [e(vη)(G1(v)−G2(v))]N/3w − 2πiη
∫
I

e(vη)(G1(v)−G2(v)) dv

� (1 + Y |η|) max
v∈I
|G1(v)−G2(v)| � Y L−2A. (2.7)

Accordingly we prove (2.5) with

S2(χ, η) :=
∫
I

e(vη) dG2(v) (2.8)

in place of S1(χ, η).
We observe that

S2(χ, η) =
1

2π

∫
I

e(vη)
∫ N

−N
F (t, χ)v−1/2+it dtdv

= S3(χ, η) + J, (2.9)

say, where
F (t, χ) =

∑
k6N

b′(k)χ(k)
k1/2+it ,

S3(χ, η) =
1

2π

∫
I

e(vη)
∫ T0

−T0

F (t, χ)v−1/2+it dtdv,

J = J(χ, η) =
1

2π

∫
|t|∈[T0,N ]

F (t, χ)
∫
I

e(vη)v−1/2+it dvdt.


(2.10)

To show that J is an error term, we first appeal to lemmata 4.3 and 4.5 of Titch-
marsh (1986) to obtain

J �
∫
|t|∈[T0,N ]

|F (t, χ)|min
(
Y N−1/2, N1/2|t|−1/2, N−1/2 min

v∈I

∣∣∣∣ tv + 2πη
∣∣∣∣) dt.

(2.11)

We are now in a position to apply (1.11). Let

L1 = {t : |t| ∈ [T0, NY
−1]},

L2 = {t : |t| ∈ [π|η|N,N ], |t| > NY −1}
L3 = {t : NY −1 < |t| 6 π|η|N}.

The contribution to J from L1 is

� Y N−1/2
∫

[T0,NY −1]
(|F (t, χ)|+ |F (t, χ̄)|) dt

� Y N−1/2NY −1Y N−1/2L−3A � Y L−3A (2.12)

from (1.11) with T ′ = T0, T = NY −1.
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For (t, v) ∈ L2 × I, we have∣∣∣∣ tv + 2πη
∣∣∣∣ > 3|t|

N
− 2π|η| > |t|

N
.

The contribution to J from L2 is thus

� N1/2L sup
NY −16T6N/2

T−1
∫ 2T

T

(|F (t, χ) + |F (t, χ̄)|) dt

� Y L−3A (2.13)

from (1.11) with T ′ = T ∈ [NY −1, 1
2N ].

In considering L3 we may suppose that

NY −1 < π|η|N, (2.14)

so that Z := max(NY −1, π|η|Y ) < π|η|N.
Now let L3(j) = {t ∈ L3 : jZ 6 t < (j + 1)Z}
so that |j|Z 6 π|η|N + Z < 2π|η|N
for non-empty L3(j).

For t ∈ L3(j), v ∈ I,∣∣∣∣ tv − jZ
1
3N

∣∣∣∣ =
∣∣∣∣(t− jZ)1

3N + jZ(1
3N − v)

v 1
3N

∣∣∣∣
6 Z

v
+

2π|η|NY
v 1

3N
6 7Z

v
<

22Z
N

. (2.15)

We now distinguish two cases.

Case 1. We have ∣∣∣∣ jZ1
3N

+ 2πη
∣∣∣∣ > 44Z

N
.

Then for t ∈ L3(j), v ∈ I,∣∣∣∣ tv + 2πη
∣∣∣∣ > ∣∣∣∣ jZ1

3N
+ 2πη

∣∣∣∣− ∣∣∣∣ tv − jZ
1
3N

∣∣∣∣
> 1

2

∣∣∣∣ jZ1
3N

+ 2πη
∣∣∣∣

from (2.15).
The contribution to J(χ, η) from L3(j) is thus

� N1/2Z−1
(

1 +
∣∣∣∣j +

2πηN
3Z

∣∣∣∣)−1 ∫
L3(j)

|F (t, χ)|dt (2.16)

� N1/2Z−1
(

1 +
∣∣∣∣j +

2πηN
3Z

∣∣∣∣)−1

ZY N−1/2L−3A (2.17)

from (1.11) with NY −1 6 T ′ 6 π|η|N , T = Z.
For the last step, we must verify condition (1.12):

|η|N = (NY −1)(|η|Y )� Z2.
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770 R. C. Baker and G. Harman

Case 2. We have ∣∣∣∣ jZ1
3N

+ 2πη
∣∣∣∣ < 44Z

N
.

Let t ∈ L3(j). Then

2π|η|N 6 |2πηN + 3jZ|+ 3|j|Z � |j|Z � |t|
for j 6= 0, while if j = 0 we have

2π|η|N < 44Z,

which implies that Z = NY −1 and

|t| > Z � |η|N.
Thus for all j,

min(Y N−1/2, N1/2|t|−1/2)� min(Y N−1/2, |η|−1/2)

=
max(N1/2, |η|1/2Y )
max(NY −1, |η|Y )

� N1/2LAZ−1

from the definitions of M and Z. In place of (2.12) we have the bound

� N1/2LAZ−1
∫
L3(j)

|F (t, χ)|dt� Y L−2A (2.18)

by a similar application of (1.11).
From (2.12), (2.13), (2.17) and (for O(1) values of j) (2.18), we get

J � Y L−2A. (2.19)

It now suffices to prove (2.5) with S3(χ, η) in place of S1(χ, η).
To extract a main term from S3(χ, η), we verify readily that, for v ∈ I,

v−1/2+it = w−1/2+it +O
(
| − 1

2 + it|w−1/2
∣∣∣ v
w
− 1
∣∣∣)

= w−1/2+it +O(T0Y N
−3/2).

An appeal to (1.9) yields

S3(χ, η) = Kχ

∫
I

e(vη) dv +O(T 3
0 Y

2N−1),

where

Kχ =
1

2πi

∫ T0

−T0

F (t, χ)w−1/2+it dt

is independent of η. Indeed,

S3(χ, η) = Kχ(t(η) +O(1)) +O(T 3
0 Y

2N−1) (2.20)

by an application of Titchmarsh (1986, lemma 4.8).
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The three primes theorem with almost equal summands 771

We can evaluate Kχ by taking η = 0 in (2.20):

Kχ(Y +O(1)) = S3(χ, 0) +O(T 3
0 Y

2N−1)

= S1(χ, 0) +O(Y L−2A)

=
δχu(b)Y
L +O(Y L−2A). (2.21)

Here we appeal to (2.6)–(2.9), (2.19) for the second equality and (1.7) for the final
step. We now assemble (2.20) and (2.21) to reach (2.5) and the crucial approximation
(2.4).

Applying Parseval’s equality to (1 − Γ )(f − f0)g, we see that in lieu of (2.1) we
need only establish∑

2n∈K

∣∣∣∣∫M f0(α)g(α)e(−2nα) dα− u(b)u(c)
L2 (2

3N − 2n)S(2n)
∣∣∣∣2 � Y 3L−A−7. (2.22)

Now∫
M
f0(α)g(α)e(−2nα) dα =

u(b)
L

∑
q6L2A

µ(q)
φ(q)

q∑∗

r=1

e

(
−2nr

q

)

×
∑
k,m∈I

c(m)e
(
mr

q

)∫ 1/qQ

−1/qQ
e((k +m− 2n)η) dη

= H(n)−
∫ 1/2

−1/2
w(η)e(−2nη) dη, (2.23)

where

H(n) =
u(b)
L

∑
q6L2A

µ(q)
φ(q)

q∑∗

r=1

e

(
−2nr

q

)∑
m∈I

c(m)e
(
mr

q

) ∑
k∈I

k+m=2n

1,

w(η) =
u(b)
L

∑
q6L2A

µ(q)
φ(q)

q∑∗

r=1

e

(
−2nr

q

)
g

(
r

q
+ η

)
t(η),

(
|η| > 1

qQ

)
,

and w(η) = 0 for |η| < 1/qQ. By Parseval’s equality,∑
2n∈K

∣∣∣∣∫ 1/2

−1/2
w(η)e(−2nη) dη

∣∣∣∣2 6 ∫ 1/2

−1/2
|w(η)|2 dη

� L4A max
|η|∈(L−2AQ−1,1/2]

|t(η)|2
∫ 1/2

−1/2
|g(ν)|2 dν

� L8AQ2Y LB � Y 3L−A−7. (2.24)

Now let I ′ = I ∩ (2n− I), then I ′ is an interval of length 2
3N − 2n and

H(n) =
u(b)
L

∑
q6L2A

µ(q)
φ(q)

q∑∗

r=1

e

(
−2nr

q

) ∑
m∈I′

c(m)e
(
mr

q

)
.
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By (1.7) for c, the innermost sum is∑
m∈I′

c(m)
q∑
b=1

e

(
b

q

)
1

φ(q)

∑
χ (mod q)

χ̄(b)χ(mr)

=
1

φ(q)

∑
χ (mod q)

χ(r)
q∑
b=1

χ̄(b)e
(
b

q

) ∑
m∈I′

c(m)χ(m)

=
1

φ(q)

∑
χ (mod q)

χ(r)
q∑
b=1

χ̄(b)e
(
b

q

){
δχu(c)
L (2

3N − 2n) +O(Y L−5A)
}

=
µ(q)
φ(q)

u(c)
L (2

3N − 2n) +O(Y L−3A),

leading to

H(n) =
u(b)u(c)
L2 (2

3N − 2n)
∑
q6L2A

µ2(q)
φ2(q)

cq(2n) +O(Y L−A)

with

cq(2n) =
q∑∗

r=1

e

(
−2nr

q

)
.

Since

S(2n) =
∞∑
q=1

µ2(q)
φ2(q)

cq(2n),

we find that ∑
2n∈K

∣∣∣∣H(n)− u(b)u(c)
L2 S(2n)(2

3N − 2n)
∣∣∣∣2

� Y 2
∑

2n∈K

∣∣∣∣ ∑
q>L2A

µ2(q)
φ2(q)

cq(2n)
∣∣∣∣2 + Y 3L−2A

� Y 2L−4A+1
∑
j∈K

τ2(j) + Y 3L−2A � Y 3L−2A (2.25)

(compare Baker et al . (1997, (2.7)–(2.9)).
Combining (2.23)–(2.25) we obtain (2.22). This completes the proof of theorem 1.2.

3. The class of sequences B ∩ C
In constructing B we are more restricted than in Baker et al . (1997, § 4). (We would
get the same set of sequences if we had T ′ � T , rather than T ′ � T 2, in (1.12).)

Nevertheless, we may begin with a transfer of results from Baker et al . (1997, §3).
Suppose that

M(s, χ) =
∑
m∼M

amm
−sχ(m), J(s, χ) =

∑
j∼J

fjj
−sχ(j), L(s, χ) =

∑
`∼L

g``
−sχ(`)
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are Dirichlet polynomials; m ∼M means 1
2M < m 6M . If N = MJL,

b′(k) =
∑
mj`=k

amfjg`,

then (1.11) becomes∫ T ′+T

T ′
|(MJL)(1

2 + it, χ)|dt� TY N−1/2L−A. (3.1)

In proving results of the form (3.1), we will need hypotheses of the shape:

M(1
2 + it, χ)�M1/2L−A for all A > 0, (3.2)

for T0 6 t 6 N , χ a character (mod q), q 6 LA.
In what follows, we suppose that 4

7 6 θ <
7
12 , and that χ is as in (3.2).

Lemma 3.1. Suppose M,J,L are Dirichlet polynomials whose coefficients satisfy
(1.9), and L satisfies (3.2). Let M = Nα1 , J = Nα2 ,

|α1 − α2| < 1
7 − ε, (3.3)

α1 + α2 >
60
77 + ε. (3.4)

Then whenever (1.12) holds, we have (3.1).

Proof . In theorem 4 of Baker et al . (1997), take X = N , T = NY −1, q 6 LA, so
that qT = N1−θ′ with 1

2 + ε < θ′ < 7
12 , 2θ′− 1 > 1

7 − 1
2ε,

1
11(20θ′− 9) > 17

77 − 1
2ε. The

Dirichlet polynomials to which we apply theorem 4 are

M(1
2 + iT ′ + it, χ)

and similarly for J, L; and we find that∫ T ′+NY −1

T ′
|(MJL)(1

2 + it)|dt� N1/2L−A

for all A > 0 and

0 6 T ′ 6 T ′ +NY −1 6 N
from (3.9) of Baker et al . (1997). The inequality (3.1) follows on combining this
bound for O(TN−1Y ) intervals of length NY −1.

The device of division into subintervals of length NY −1 will be used in lem-
mata 3.2–3.4 without further comment. �

Lemma 3.2. The analogue of lemma 3.1, with (3.3), (3.4) replaced by

max(α1, α2) 6 0.46 + ε/2, min(α1, α2) > 2
7 + ε, (3.5)

α1 + α2 > 36
49 + ε, (3.6)

is valid.

Proof . Inserting the bound qT 6 L2AN3/7 into the proof of lemma 4 of Baker et
al . (1997), we readily obtain the required result. �
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Lemma 3.3. The analogue of lemma 3.1, with (3.3), (3.4) replaced by

α1 >
3
7 + ε, (3.7)

α2 >
2
7 + ε, (3.8)

4α1 + α2 <
16
7 − ε, (3.9)

is valid.

Proof . In the proof of lemma 4 of Baker et al . (1997), cases 2 and 4 cannot arise,
because of (3.7). In case 3, the conditions needed are

1
4(1− θ) + 1

8 + 1
8(3− 3α2) < 1

2 − 1
8ε,

1
2(1− θ) + 1

2α1 + 1
8α2 <

1
2 − 1

8ε,

and these are implied by (3.8), (3.9). The proof now goes through as before. �

Lemma 3.4. Let L,M, J and

R(s, χ) =
∑
r∼R

drr
−sχ(r) (3.10)

satisfy (1.9), while L, J and R satisfy (3.2). Suppose further that

M > N3/7+ε, J > N1/7+ε, R2L > N3/7+ε, L > N6/35+ε.

Then ∫ T ′+T

T ′
|MJLR(1

2 + it, χ)|dt� TY N−1/2L−A.

whenever (1.12) holds.

Proof . We follow the proof of lemma 3(iii) of Baker et al . (1997), inserting the
bound qT 6 L2AN3/7, to get the desired inequality.

We now turn to Dirichlet polynomials with special coefficients. The next lemma
follows from Baker et al . (1997, lemmata 5, 6). �

Lemma 3.5. Let

M(s, χ) =
∑

M<m6M ′
(m,P (z))=1

χ(m)m−s, M0(s, χ) =
∑

M<m6M ′
χ(m)m−s, (3.11)

where M ′ 6 2M and z > exp(L9/10). Then M(s, χ) satisfies (3.2). If M0 > N ε, then
M0 satisfies (3.2).

Lemma 3.6. With M0, R as in (3.11), (3.10), suppose that R satisfies (1.9) and

R� Y N−ε.

Whenever (1.12) holds, we have∫ T+T ′

T ′
|(M0R)(1

2 + it, χ)|dt� TY N−1/2L−A. (3.12)
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Proof . By Cauchy’s inequality and lemma 1 of Baker et al . (1997), the left-hand
side of (3.12) is

� LB(R+ qT )1/2
(∫ T+T ′

T ′
|M0(1

2 + it, χ)|2 dt
)1/2

.

The reflection principle, as used for example in Perelli et al . (1984, (21)) yields
M0(1

2 + it, χ) = J(1
2 − it, χ′) +O(1),

for t ∈ [T ′, T + T ′], where the Dirichlet polynomial J has coefficients of modulus 1,
χ′ is χ or χ̄, and J has length � (T ′ + T )1/2 � T . Hence∫ T+T ′

T ′
|M0(1

2 + it, χ)|2 dt� qT

by another application of Baker et al . (1997, lemma 1). The left-hand side of (3.12)
is

� LB(Y N−ε)1/2T 1/2 � TY N−1/2L−A,
since T > NY −1.

Let

ψ(n, z) =

{
1 if (n, P (z)) = 1
0 otherwise

for n > 1, z > 2, and write
w = exp(L9/10), z0 = N1/7−2ε.

�

Lemma 3.7. Let b = (b(k))k∈I , where

b(k) =
∑
m∼M
m`=k

amψ(`, w)

where am satisfies (1.9), am = 0 for (m,P (w)) > 1, and

M � N1/2.

Then b ∈ B ∩ C.
Proof . Let

b′(k) =
∑
m∼M
ndm=k

am
∑

d|P (w), d6Nε/2
µ(d);

then, just as in the proof of Baker et al . (1997, (4.12)), we obtain (1.10). Lemma 3.7
now follows readily from lemma 3.6 and the definition of a type-(I) sum. �

Lemma 3.8. Let
b(k) =

∑
m∼M
m`=k

amψ(`, z),

where M 6 N1/2, am satisfies (1.9), am = 0 for (m,P (w)) > 1, and
w 6 z 6 z0.

Then b ∈ B ∩ C.
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Proof . Let q1, q2, . . . be prime variables. We apply Buchstab’s identity

ψ(j, z) = ψ(j, w)−
∑
ph=j
w6p<z

ψ(h, p)

(Baker et al . 1997 (4.14)) to obtain

b(k) =
∑
m`=k
m∼M

amψ(`, w)−
∑

mq1h=k
m∼M,w6q1<z

amψ(h, p1)

= b′0(k)− b′1(k),

say. Let b1(k) be the subsum of b′1(k) defined by the extra condition

mq
1/2
1 < N3/7+ε

and b′′1(k) the complementary subsum, so that

b(k) = b′0(k)− b1(k)− b′′1(k).

We now apply Buchstab’s identity to b1(k). In this fashion we may obtain succes-
sive decompositions

bj(k) = b′j(k)− bj+1(k)− b′′j+1(k)

with

bj(k) =
∑

mq1...qjh=k

amψ(h, pj),

the summation being restricted by

m ∼M,w 6 qj < · · · < q1 < z, (3.13j)

mq1 . . . qj−1q
1/2
j < N3/7+ε, (3.14j)

b′j(k) defined as bj(k) with ψ(h,w) in place of ψ(h, pj), and b′′j+1(k) defined in the
same way as bj+1(k) with (3.14j+1) replaced by: (3.14j) and

mq1 . . . qjq
1/2
j+1 > N3/7+ε. (3.15j+1)

After less than L steps, bj(k) is empty and decomposition ceases. From (3.13j),
(3.14j),

mq1 . . . qj−1qj � N1/2 (3.16)

for the terms of b′j(k), and we may apply lemma 3.7 to show that b′j is in B ∪ C.
We now consider the sequence b′′j+1 = (b′′j+1(k))k∈I , where j > 0. We shall deduce

that b′′j+1 ∈ B from lemma 3.1. The interdependence of the variables arising from
the factor ψ(h, pj) is removed by the procedure described on pp. 27, 28 of Baker et
al . (1997). The Dirichlet polynomials that we use have

M = Nα1 , J = Nα2 , L 6 N1/7−ε.

Here M corresponds to mq1 . . . qj , L to qj+1, and J to h. In view of lemma 3.7, the
requirements (1.9), and (3.2) for L, are met. Since

α1 + α2 > 6
7 + ε, (3.17)
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the remaining condition that we need to verify is

−1
7 + ε 6 α1 − α2 6 1

7 − ε. (3.18)

The left-hand inequality comes directly from (3.15j+1). Moreover,

α1 − α2 = 2α1 − (α1 + α2)

6 1− (6
7 + ε) = 1

7 − ε
from (3.16), (3.17). It follows that b′′j+1 ∈ B.

To see that b′′j+1 ∈ C, we simply observe that if ` is the least integer with
mq1 . . . q` > N3/7+ε, then ` = j or j + 1 from (3.14j), (3.15j+1). Consequently,

N3/7+ε 6 mq1 . . . q` < N3/7+εz 6 N4/7−ε,

if ` > 0, while if ` = 0, then

N3/7+ε 6 m < 2N1/2.

This completes the proof of lemma 3.8. �

We now give a sequence A0(k) in B ∩ C for which

ρ(k) > A0(k). (3.19)

By Buchstab’s identity,

ρ(k) = ψ(k, z0)−
∑

z06p1<N
1/2

p1p2=k

ψ(n2, z0) +
∑

p1p2n3=k
z06p2<p1<N1/2

ψ(n3, p2)

= S1(k)− S2(k) + S3(k), say.

We do not decompose further those parts of S3(k) for which either

p1p
2
2 > N4/7−ε (3.20)

or

p1p2 < N5/14+ε and p1p
2
2 > N1/2. (3.21)

Writing
∑′ for a sum in which neither (3.20) nor (3.21) holds, we decompose twice

more to obtain∑′

p1p2p3=k
z06p2<p1<N1/2

ψ(n3, p2) =
∑′

p1p2n3=k
z06p2<p1<N1/2

ψ(n3, z0)−
∑′

z06p3<p2<p1<N
1/2

p1p2p3n4=k

ψ(n4, z0)

+
∑′

z06p4<p3<p2<p1
p1p2p3p4n5=k

ψ(n3, p4)

= S4(k)− S5(k) + S6(k),

say. We can now ‘recover’ some of the terms of S3(k). Suppose that p1, p2 lie in a
region satisfying (3.20) or (3.21) for which some subproduct of the variables p1, p2, n3
lies in [N3/7+ε, N4/7−ε] and some arrangement of variables permits application of
lemma 3.1, 3.2 or 3.3. Let us denote by S3,1(k) this portion of the sum S3(k); then
(S3,1(k)) ∈ B ∩ C.
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Similarly, suppose that p1, p2, p3, p4 lie in a part of the domain of summation of
S6(k) for which some subproduct of the variables p1, p2, p3, p4, n5 lies in [N3/7+ε,
N4/7−ε] and some arrangement of the variables permits application of lemma 3.1, 3.2,
3.3 or 3.4. Let us denote by S6,1(k) this portion of the sum S6(k); then (S6,1(k)) ∈
B ∩ C. We now have (3.19) with

A0(k) = S1(k)− S2(k) + S3,1(k) + S4(k)− S5(k) + S6,1(k).

Lemma 3.9. The sequence A0 is in B ∩ C.
Proof . In view of the above discussion and lemma 3.8 it suffices to prove that

(S4(k)) ∈ B ∩ C, (3.22)
(S5(k)) ∈ B ∩ C. (3.23)

In S4(k) we have p1p2 = p1p
2
2p
−1
2 6 N4/7−εp−1

2 , and so

p1p2 < N3/7+ε.

Thus (3.22) is a consequence of lemma 3.7.
We examine first the part of S5(k) satisfying

p1p2p
1/2
3 > N3/7+ε. (3.24)

Since

p1p2p3 6 p1p
2
2 6 N4/7−ε,

this part of S5(k) is in C. Moreover,

p1p2

k/(p1p2p3)
=
p2

1p
2
2p3

k
> N−1/7+ε,

p1p2

k/(p1p2p3)
6 p2

1p
3
2

k
6 N1/7−ε.

By lemma 3.1, this part of S5(k) is in B ∩ C.
Turning to the part of S5(k) for which (3.24) is violated, we note that

p1p2 < N3/7+εp
−1/2
3 < N5/14+ε.

Since (3.21) is violated,

m = p1p2p3 6 p1p
2
2 6 N1/2.

We now deduce from lemma 3.8 that this part of S5(k) is in B ∩ C.
For the sequence A1(k), we begin by noting that

ρ(k) = ψ(k, z0)−
∑

z06p1<N
1/4

p1n2=k

ψ(n2, z0)−
∑

N1/46p1<N1/2

ψ(n2, p1)

+
∑

p1p2n3=k
z06p2<p1<N1/4

ψ(n3, z0)−
∑

p1p2p3n4=k
z06p3<p2<p1<N1/4

ψ(n4, p3);

that is, we decompose twice more the part of ψ(n2, p1) having p1 < N1/4. Let us
write this as

ρ(k) = T1(k)− T2(k)− T3(k) + T4(k)− T5(k),
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say. Let T5,1(k) denote the part of T5(k) for which some subproduct of the variables
lies in [N3/7+ε, N4/7−ε] and some arrangement of variables permits application of
lemma 3.1, 3.2, 3.3 or 3.4. Then

ρ(k) 6 A1(k),

where

A1(k) = T1(k)− T2(k) + T4(k)− T5,1(k).

It is clear from lemma 3.8 and the definition of T5,1(k) that A1 ∈ B ∩ C. The
requirement that A0,A1 satisfy (1.7) can be established in the same way as in Baker
et al . (1997); namely, via lemma 11 of Baker et al . (1997) together with the Siegel–
Walfisz theorem.

As for the constants u(A0) and u(A1), a computer calculation yields

u(A0) > 1
4 .

With a little thought we see that u(A1) = 4w(4)+ c, where w is Buchstab’s function
and c is a three-dimensional integral corresponding to T5−T5,1 (cf. Baker et al . 1997,
p. 53). Since c < 0.04 by a computer calculation, we obtain

u(A1) < 2.32.

In § 4 of Baker et al . (1997), we find sequences B0(m) and B1(m)(m ∈ I) in B0
which satisfy

B0(m) 6 ρ(m) 6 B1(m), (3.25)
0.99 < u(B0) < 1 < u(B1) < 1.01. (3.26)

Since

u(A0)u(B1) + u(A1)(u(B0)− u(B1)) > 1
4 − 2.32× 0.02 > 1

5 ,

(1.6) holds. This completes the proof of theorem 1.1. �
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